Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1245), 2010

DOI: 10.1557/proc-1245-a20-06

Links

Tools

Export citation

Search in Google Scholar

Biaxial Texturing of Inorganic Photovoltaic Thin Films Using Low Energy Ion Beam Irradiation During Growth

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWe describe our efforts to control the grain boundary alignment in polycrystalline thin films of silicon by using a biaxially textured template layer of CaF2 for photovoltaic device applications. We have chosen CaF2 as a candidate material due to its close lattice match with silicon and its suitability as an ion beam assisted deposition (IBAD) material. We show that the CaF2 aligns biaxially at a thickness of ~10 nm and, with the addition of an epitaxial CaF2 layer, has an in-plane texture of ~15°. Deposition of a subsequent layer of Si aligns on the template layer with an in-plane texture of 10.8°. The additional improvement of in-plane texture is similar to the behavior observed in more fully characterized IBAD materials systems. A germanium buffer layer is used to assist in the epitaxial deposition of Si on CaF2 template layers and single crystal substrates. These experiments confirm that an IBAD template can be used to biaxially orient polycrystalline Si.