Elsevier, Trends in Cardiovascular Medicine, 8(25), p. 676-683
DOI: 10.1016/j.tcm.2015.02.006
Full text: Download
The stability of mRNA has emerged as a key step in the regulation of eukaryotic gene expression and function. RNA stabilizing proteins (RSPs) contain several RNA recognition motifs, and selectively bind to Adenylate- and uridylate- Rich Elements in the 3′ untranslated region of several mRNAs leading to altered processing, stability and translation. These post-transcriptional gene regulations play a critical role in cellular homeostasis; therefore act as molecular switch between ‘normal cell’ and ‘disease state’. Many mRNA binding proteins have been discovered to date, which either stabilize (HuR/HuA, HuB, HuC, HuD) or destabilize (AUF1, Tristetraprolin, KSRP) the target transcripts. Although the function of RSPs has been widely studied in cancer biology, its role in cardiovascular pathologies is only beginning to evolve. The current review provides an overall understanding of the potential role of RSP, specifically HuR-mediated mRNA stability in myocardial infarction, hypertension and hypertrophy. Also, the effect of RSPs on various cellular processes including inflammation, fibrosis, angiogenesis, cell-death and proliferation and its relevance to cardiovascular pathophysiological processes is presented. We also discuss the potential clinical implications of RSPs as therapeutic targets in cardiovascular diseases.