American Chemical Society, Journal of the American Chemical Society, 6(135), p. 2120-2123, 2013
DOI: 10.1021/ja312227h
Full text: Unavailable
Nuclear singlet states are nonmagnetic states of nuclear spin-1/2 pairs that may exhibit lifetimes much slower than the relaxation of the component spins in isolation. This feature makes them attractive vehicles for conveying nuclear hyperpolarization in NMR spectroscopy and magnetic resonance imaging experiments and for reducing signal losses in other NMR experiments caused by undesirably fast nuclear spin relaxation. Here we show access to 13C2 singlet states in a symmetrical oxalate molecule by substituting one or more 16O nuclei by the stable nonmagnetic isotope 18O. The singlet relaxation time of the 13C2 pair in [1-18O,13C2]-oxalate is 2–3 times longer than the spin–lattice relaxation time T1