Published in

World Scientific Publishing, Journal of Mechanics in Medicine and Biology, p. 1650084

DOI: 10.1142/s0219519416500846

Links

Tools

Export citation

Search in Google Scholar

Global Optimization Method Applied to the Kinematics of Gait in Pregnant Women

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Morphological changes are associated to pregnancy, such as weight gain and increased volume of the trunk. The soft tissue artifact can also increase with these characteristics and affect the real joint kinematics. The main objective of this study was to understand the effect of using three different constraining sets in the lower limb joints, in the amount of soft tissue artifact (STA) of pregnant women, in order to obtain the most appropriated joint set to be used in gait and in this population. The ankle, knee and hip joints were modeled respectively with the following characteristics: (1) Universal–revolute–spherical (URS), (2) spherical–revolute–spherical (SRS) and (3) spherical–spherical–spherical (SSS). The six degrees of freedom (6DOF) model was used as the basis for comparison and considered the one with the highest error associated to the STA. In pregnant women, the URS model seems to affect more the kinematic variables when compared with the 6DOF model. Assuming that the kinematic error associated with pregnant women is increased due to the STA, the URS model may be affecting more the angular kinematics of the knee joint. SSS model seems to be more appropriated to analyze gait in second trimester pregnant women.