Published in

Canadian Science Publishing, Canadian Journal of Physiology and Pharmacology, 10(68), p. 1351-1356

DOI: 10.1139/y90-204

Links

Tools

Export citation

Search in Google Scholar

Phencyclidine actions measured intracellularly in hippocampal CA1 neurons

Journal article published in 1990 by Peter W. Kujtan, Peter L. Carlen ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The electrophysiological effects of phencyclidine (PCP) were measured intracellularly in guinea pig hippocampal CA1 neurons in vitro. At all doses tested (0.2 μM – 10 mM), PCP increased the width of action potentials (APs). Doses of 10 μM and higher were associated with decreased action potential amplitude. PCP decreased inhibitory postsynaptic potentials and excitatory postsynaptic potentials but did not alter responses to focally applied GABA. At the lowest dose (0.2 μM), PCP decreased the input resistance (Rin), while at all other doses Rin was increased. PCP decreased post-spike train afterhyperpolarizations at low and medium doses. PCP effects persisted in low calcium medium and also in medium containing 10−6 M tetrodotoxin. It is concluded that in these central neurons, PCP primarily blocks potassium conductances at all doses and, at anesthetic doses, depresses sodium-dependent spikes.Key words: phencyclidine, potassium conductance, CA1 neurons, electrophysiology.