Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Molecular Microbiology, 4(97), p. 646-659, 2015

DOI: 10.1111/mmi.13052

Links

Tools

Export citation

Search in Google Scholar

Cross-species chimeras reveal BamA POTRA and β-barrel domains must be fine-tuned for efficient OMP insertion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BAM is a conserved molecular machine, the central component of which is BamA. Orthologues of BamA are found in all Gram-negative bacteria, chloroplasts and mitochondria where it is required for the folding and insertion of β-barrel containing integral outer membrane proteins (OMPs) into the outer membrane. BamA binds unfolded β-barrel precursors via the five polypeptide transport-associated (POTRA) domains at its N-terminus. The C-terminus of BamA folds into a β-barrel domain, which tethers BamA to the outer membrane and is involved in OMP insertion. BamA orthologues are found in all Gram-negative bacteria and appear to function in a species-specific manner. Here we investigate the nature of this species-specificity by examining whether chimeric Escherichia coli BamA fusion proteins, carrying either the β-barrel or POTRA domains from various BamA orthologues, can functionally replace E. coli BamA. We demonstrate that the β-barrel domains of many BamA orthologues are functionally interchangeable. We show that defects in the orthologous POTRA domains can be rescued by compensatory mutations within the β-barrel. These data reveal that the POTRA and barrel domains must be precisely aligned to ensure efficient OMP insertion.