Published in

Braz. J. Oral Sci., 3(12), p. 205-211

DOI: 10.1590/s1677-32252013000300010

Links

Tools

Export citation

Search in Google Scholar

Effects of masticatory hypofunction on mandibular morphology, mineral density and basal bone area

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

AIM: This experimental study investigated the association between masticatory hypofunction and mandibular morphological dimensions and internal bone characteristics. METHODS: Twentyfour 21-day-old male Wistar rats were randomly divided into two groups, according to the diet consistency. The control group (CG) was fed a solid diet (pellets) and the experimental group (EG) received a powdered diet during 50 days. All animals were euthanized and their mandibles removed and processed for histomorphometric analysis. A calibrated examiner performed linear and angular measurements (mandibular body length and height, mandibular lengths, ramus depth and height, mandibular base depth, mandibular head and gonial angle) on photographs, estimated bone density in the mandibular ramus region on digital radiographs and assessed the area of cortical and trabecular bone tissue in the second molar region, in 5-µm-thick serial cuts stained with Cason's Trichrome. Measurements for the study groups were compared using Mann-Whitney test (α=0.05). larvae to induce experimental candidiasis, and after 24 hours, the survival rate was assessed. RESULTS: some of the macroscopic dimensions evaluated on photographs were significantly smaller in EG compared to CG, specifically mandibular ramus height (10.77 mm vs. 11.11 mm, p=0.0375), mandibular body length (21.67 mm vs. 22.36 mm, p=0.0165) and height (4.24 mm vs. 4.54 mm, p=0.0016), as well as mandibular base depth (1.24 mm vs. 1.47 mm, p=0.0325). The relative mineral bone density was significantly decreased in EG (1.04) compared to CG (1.25), p<0.001. Rats in the EG also presented smaller trabecular and cortical bone area (2.36 mm2) than those in CG (3.16 mm2), p<0.001. CONCLUSIONS: Based on the above-mentioned measurements, it may be concluded that masticatory hypofunction induced by a powdered diet affected mandibular morphology and was associated with significantly reduced bone content.