Published in

Elsevier, Journal of Biotechnology, (169), p. 63-70, 2014

DOI: 10.1016/j.jbiotec.2013.11.002

Links

Tools

Export citation

Search in Google Scholar

Exploiting the metabolism of PYC expressing HEK293 cells in fed-batch cultures

Journal article published in 2014 by Cédric Vallée, Yves Durocher, Olivier Henry
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The expression of recombinant yeast pyruvate carboxylase (PYC) in animal cell lines was shown in previous studies to reduce significantly the formation of waste metabolites, although it has translated into mixed results in terms of improved cellular growth and productivity. In this work, we demonstrate that the unique phenotype of PYC expressing cells can be exploited through the application of a dynamic fed-batch strategy and lead to significant process enhancements. Metabolically engineered HEK293 cells stably producing human recombinant IFNα2b and expressing the PYC enzyme were cultured in batch and fed-batch modes. Compared to parental cells, the maximum cell density in batch was increased 1.5-fold and the culture duration was extended by 2.5 days, but the product yield was only marginally increased. Further improvements were achieved by developing and implementing a dynamic fed-batch strategy using a concentrated feed solution. The feeding was based on an automatic control-loop to maintain a constant glucose concentration. This strategy led to a further 2-fold increase in maximum cell density (up to 10.7×106cells/ml) and a final product titer of 160mg/l, representing nearly a 3-fold yield increase compared to the batch process with the parental cell clone. © 2013. ; peer reviewed: yes ; system details: This record was machine loaded using metadata from Scopus ; NRC Pub: yes