Published in

CSIRO Publishing, Functional Plant Biology, 9(38), p. 633, 2011

DOI: 10.1071/fp11066

Links

Tools

Export citation

Search in Google Scholar

Progress on research on actinorhizal plants

Journal article published in 2011 by Katharina Pawlowski ORCID, Didier Bogusz, Ana Ribeiro ORCID, Alison M. Berry
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In recent years, our understanding of the plant side of actinorhizal symbioses has evolved rapidly. No homologues of the common nod genes from rhizobia were found in the three Frankia genomes published so far, which suggested that Nod factor-like molecules would not be used in the infection of actinorhizal plants by Frankia. However, work on chimeric transgenic plants indicated that Frankia Nod factor equivalents signal via the same transduction pathway as rhizobial Nod factors. The role of auxin in actinorhizal nodule formation differs from that in legume nodulation. Great progress has been made in the analysis of pathogenesis-related and stress-related gene expression in nodules. Research on nodule physiology has shown the structural and metabolic diversity of actinorhizal nodules from different phylogenetic branches. The onset of large-scale nodule transcriptome analysis in different actinorhizal systems will provide access to more information on the symbiosis and its evolution.