Published in

2015 23rd Mediterranean Conference on Control and Automation (MED)

DOI: 10.1109/med.2015.7158794

Links

Tools

Export citation

Search in Google Scholar

Real time optimal power flow integrating large scale storage devices and wind generation

Proceedings article published in 2015 by Alessandro Di Giorgio ORCID, Francesco Liberati, Andrea Lanna
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents a real time strategy for optimal power flow in presence of storage devices and wind turbine driven by Doubly Fed Induction Generators. These elements work in cooperation defining a dynamic bus where the generated power is subject to temporal constraints, which establish a coupling between traditional power flow problems related to consecutive time periods; further the uncertainty in wind power generation forecasts requires a continuous update of the planned power profiles, in order to guarantee a dynamic equilibrium among demand and supply. Model predictive control is used for this purpose, considering the dynamic equations of the storage and the wind turbine rotor as prediction models. A proper target function is introduced in order to find a trade-off between the need of minimizing generation costs and the excursions of the storage state of charge and the wind turbine angular speed from reference states. In the case study under consideration storage, wind turbines and a traditional synchronous generator are operated by the Transmission System Operator in the form of a Virtual Power Plant working as slack bus to cover network losses. The proposed approach is validated on simulation basis.