Hybrid ligand–alkylating agents targeting telomeric G-quadruplex structures

Full text: Unavailable

Publisher: Royal Society of Chemistry

Preprint: archiving allowed. Upload

Postprint: archiving restricted: Upload

  • 12 months embargo

Published version: archiving forbidden. Upload

Policy details (opens in a new window). Data provided by SHERPA/RoMEO

Contact authors Contact

Abstract
The synthesis, physico-chemical properties and biological effects of a new class of naphthalene diimides (NDIs) capable of reversibly binding telomeric DNA and alkylate it through an electrophilic quinone methide moiety (QM), are reported. FRET and circular dichroism assays showed a marked stabilization and selectivity towards telomeric G4 DNA folded in a hybrid topology. NDI-QMs' alkylating properties revealed a good reactivity on single nucleosides and selectivity towards telomeric G4. A selected NDI was able to significantly impair the growth of melanoma cells by causing telomere dysfunction and down-regulation of telomerase expression. These findings points to our hybrid ligand-alkylating NDIs as possible tools for the development of novel targeted anticancer therapies.