Published in

Elsevier, Applied Mathematical Modelling, 11(33), p. 4097-4119, 2009

DOI: 10.1016/j.apm.2009.02.016

Links

Tools

Export citation

Search in Google Scholar

Reduced order fully coupled, structural-acoustic analysis via implicit moment matching

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A reduced order model is developed for low frequency, undamped, fully coupled structural–acoustic analysis of interior cavities backed by flexible structural systems. The reduced order model is obtained by applying a projection of the coupled system matrices, from a higher dimensional to a lower dimensional subspace, whilst preserving essential properties of the coupled system. The basis vectors for projection are computed efficiently using the Arnoldi algorithm, which generates an orthogonal basis for the Krylov Subspace containing moments of the original system. The key idea of constructing a reduced order model via Krylov Subspaces is to remove the uncontrollable, unobservable and weakly controllable, observable parts without affecting the transfer function of the coupled system. Three computational test cases are analyzed, and the computational gains and the accuracy compared with the direct inversion method in ANSYS. It is shown that the reduced order model decreases the simulation time by at least one order of magnitude, while maintaining the desired accuracy of the state variables under investigation. The method could prove as a valuable tool to analyze complex coupled structural–acoustic systems, and their subsequent optimization or sensitivity analysis, where, in addition to fast analysis, a fine frequency resolution is often required.