Published in

Wiley, BioEssays, 2(36), p. 191-199, 2013

DOI: 10.1002/bies.201300126

Links

Tools

Export citation

Search in Google Scholar

Functional interpretation of non-coding sequence variation: Concepts and challenges: Prospects & Overviews

Journal article published in 2013 by Dirk S. Paul ORCID, Nicole Soranzo, Stephan Beck
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Understanding the functional mechanisms underlying genetic signals associated with complex traits and common diseases, such as cancer, diabetes and Alzheimer's disease, is a formidable challenge. Many genetic signals discovered through genome-wide association studies map to non-protein coding sequences, where their molecular consequences are difficult to evaluate. This article summarizes concepts for the systematic interpretation of non-coding genetic signals using genome annotation data sets in different cellular systems. We outline strategies for the global analysis of multiple association intervals and the in-depth molecular investigation of individual intervals. We highlight experimental techniques to validate candidate (potential causal) regulatory variants, with a focus on novel genome-editing techniques including CRISPR/Cas9. These approaches are also applicable to low-frequency and rare variants, which have become increasingly important in genomic studies of complex traits and diseases. There is a pressing need to translate genetic signals into biological mechanisms, leading to prognostic, diagnostic and therapeutic advances.