Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 13(14), p. 6759-6775, 2014

DOI: 10.5194/acp-14-6759-2014

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 5(14), p. 5495-5533

DOI: 10.5194/acpd-14-5495-2014

Links

Tools

Export citation

Search in Google Scholar

African dust outbreaks over the western Mediterranean Basin: 11-year characterization of atmospheric circulation patterns and dust source areas

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The occurrence of African dust outbreaks over the western Mediterranean basin were identified on an 11 year period (2001–2011). PM 10 daily data from nine regional background air quality monitoring sites across the study area were compiled and the net dust load transported during each event was estimated. Then, the main atmospheric circulation patterns causing the transport of African air masses, were characterized by mean of an objective classification methodology of atmospheric variables fields. Next, the potential source areas of mineral dust, associated to each circulation pattern were identified by trajectory statistical methods. Finally, an impact index was calculated to estimate the incidence of the African dust outbreaks produced during each circulation pattern, on the levels of dust load in PM 10 concentrations recorded in the different regions. Our results indicate that the values of the impact index and the areas affected by African dust, strongly depended on the atmospheric circulation pattern. Four circulation types were obtained by the classification procedure. Two of them (CT-1 and CT-4) occurred predominantly during the warm season, bringing dust from areas of Algeria, Tunisia, Western Sahara, western Libya and Mauritania. African dust outbreaks produced during the CT-4 were the most frequent across the period of study, generating the highest impact index over southern, central and eastern regions of the Iberian Peninsula as well as over the Balearic Islands. Conversely, the events caused by the CT-1 encompassed the highest impact index over the western areas of the Iberian Peninsula. The two remaining circulation types (CT-2 and CT-3) were more frequently observed during the spring season. The prevailing flows generated by these two atmospheric circulation patterns, carried mineral dust from areas of Algeria, Tunisia and Western Sahara, giving rise to higher values of the impact index from eastern to western areas of the western Mediterranean basin.