Published in

Elsevier, Applied Surface Science, (282), p. 656-661

DOI: 10.1016/j.apsusc.2013.06.028

Links

Tools

Export citation

Search in Google Scholar

Structural evaluation and nonlinear optical properties of Ni/NiO, Ni/NiCo2O4 and Co/Co3O4 nanocomposites

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Restricted Access. ; Nanocomposites of Ni/NiO, Ni/NiCo2O4 and Co/Co3O4 have been synthesized by a chemical reduction technique. X-ray diffraction (XRD) and transmission electron microscopy (TEM) images confirm the mixed composite nature of the sample and uniform particle size of approximately 13 nm. Formation of Ni/NiCo3O4 solid solution or NiCo2O4 spinel phase in the mixed composite is confirmed by energy dispersive X-ray (EDX) spectrum. Magnetic hysteresis (M–H) curves of the nanocomposites show excellent ferromagnetic (FM) nature at room temperature. Nonlinear optical transmission of the nanocomposites is measured using the open aperture Z-scan technique employing 7 nanosecond laser pulses at 532 nm. Experimental results show that NiO/NiO–Co3O4/Co3O4 nanocomposites exhibit good optical limiting performance. From the measurements and numerical fitting of the data to theory, it is found that nonlinear absorption has contributions from excited state absorption and two-photon absorption. Optical limiting is enhanced in Co3O4 and Ni/NiCo2O4 in which the Co3O4 content has a larger volume ratio.