Published in

American Chemical Society, Journal of Medicinal Chemistry, 19(52), p. 5950-5966, 2009

DOI: 10.1021/jm900496b

Links

Tools

Export citation

Search in Google Scholar

Modeling, Synthesis and Biological Evaluation of Potential Retinoid-X-Receptor (RXR) Selective Agonists: Novel Analogs of 4-[1-(3,5,5,8,8- Pentamethyl-5,6,7,8-tetrahydro-2- naphthyl)ethynyl]benzoic Acid (Bexarotene)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This report describes the synthesis of analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), commonly known as bexarotene, and their analysis in acting as retinoid X receptor (RXR)-specific agonists. Compound 1 has FDA approval to treat cutaneous T-cell lymphoma (CTCL); however, its use can cause side effects such as hypothyroidism and increased triglyceride concentrations, presumably by disruption of RXR heterodimerization with other nuclear receptors. The novel analogues in the present study have been evaluated for RXR activation in an RXR mammalian-2-hybrid assay as well as an RXRE-mediated transcriptional assay and for their ability to induce apoptosis as well as for their mutagenicity and cytotoxicity. Analysis of 11 novel compounds revealed the discovery of three analogues that best induce RXR-mediated transcriptional activity, stimulate apoptosis, have comparable K(i) and EC(50) values to 1, and are selective RXR agonists. Our experimental approach suggests that rational drug design can develop new rexinoids with improved biological properties.