Published in

Dynamic Behavior of Materials, Volume 1, p. 379-388

DOI: 10.1007/978-3-319-06995-1_52

Links

Tools

Export citation

Search in Google Scholar

Mesoscale Simulations of Dry Sand

Book chapter published in 2014 by Merit G. Schumaker, John P. Borg, Gregory Kennedy, Naresh N. Thadhani
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

There is an interest in producing accurate and reliable computer simulations to predict the dynamic behavior of heterogeneous materials and to use these simulations to gain further insight into experimental results. In so doing, a more complete understanding of the multiple-length scale involved in heterogeneous material compaction can be obtained. In this work, planar shock impact experiments were simulated using two different hydrocode formulations: iSALE and CTH. The simulations, which were based on a Georgia Tech experimental setup, consisted of a flyer of varying thickness impacting dry sand over a range of impact. Particle velocity traces obtained from the computer simulations were compared to VISAR and PDV measurements obtained from experiments. The mesoscale simulations compare well with the dynamic behavior of dry sand. Improvements on these simulations with the inclusion of these mesoscale phenomena are presented and discussed.