Dissemin is shutting down on January 1st, 2025

Published in

Wiley, physica status solidi (a) – applications and materials science, 5(211), p. 1005-1018, 2014

DOI: 10.1002/pssa.201300750

Links

Tools

Export citation

Search in Google Scholar

Magnetization states and magnetization processes in nanostructures: From a single layer to multilayers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The results of combined (experimental, analytical, and micromagnetic simulations) studies on the evolution of magnetization states and processes in ultrathin films and multilayered systems are presented. We show ways to manipulate magnetization distributions in ultrathin magnetic single or multilayers by tuning: the thickness of the magnetic layer, the thickness of either the non-magnetic cap or spacer layer, the magnetic anisotropy, and the geometrical constrictions of the system. In ultrathin magnetic films, both the magnetization distribution and the critical thickness of the magnetization reorientation phase transition (RPT) between perpendicular and in-plane states can be also controlled by post-growth treatments, e.g., by either ion or light irradiation. By changing the geometrical parameters of the nanostructure, as well as by an applied external magnetic field, one can tune magnetic domain sizes in a giant range (of a few orders of magnitude) and induce the RPT. Transitions between two- and three-dimensional magnetization distributions are discussed.