Published in

Elsevier, Journal of Psychiatric Research, 4(44), p. 201-208

DOI: 10.1016/j.jpsychires.2009.08.010

Links

Tools

Export citation

Search in Google Scholar

Allele specific analysis of the ADRBK2 gene in lymphoblastoid cells from bipolar disorder patients

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

G-protein coupled receptor kinase-3 (GRK3), translated from the gene, ADRBK2 has been implicated as a candidate molecule for bipolar disorder through multiple, converging lines of evidence. In some individuals, the ADRBK2 gene harbors the A-haplotype, a collection of single nucleotide polymorphisms (SNPs) previously associated with an increased risk for bipolar disorder. Because the A-haplotype encompasses the ADRBK2 promoter, we hypothesized that it may alter the regulation of gene expression. Using histone H3 acetylation to infer promoter activity in lymphoblastoid cells from patients with bipolar disorder, we examined the A-haplotype within its genomic context and determined that at least four of its SNPs are present in transcriptionally active portions of the promoter. However, using chromatin immunoprecipitation followed by allele-specific PCR in samples heterozygous for the A-haplotype, we found no evidence of altered levels of acetylated histone H3 at the affected allele compared to the common allele. Similarly, using a transcribed SNP to discriminate expressed ADRBK2 mRNA strands by allele of origin; we found that the A-haplotype did not confer an allelic-expression imbalance. Our data suggest that while the A-haplotype is situated in active regulatory sequence, the risk-associated SNPs do not appear to affect ADRBK2 gene regulation at the level of histone H3 acetylation nor do they confer measurable changes in transcription in lymphoblastoid cells. However, tissue-specific mechanisms by which the A-haplotype could affect ADRBK2 in the central nervous system cannot be excluded.