Springer, Lecture Notes in Computer Science, p. 927-934, 2005
DOI: 10.1007/11566489_114
Full text: Download
Deforming a digital atlas towards a patient image allows the simultaneous segmentation of several structures. Such an intersubject registration is difficult as the deformations to recover are highly inhomogeneous. A priori information about the local amount of deformation to expect is precious, since it allows to optimally balance the quality of the matching versus the regularity of the deformation. However, intersubject variability makes it hard to heuristically estimate the degree of deformation. Indeed, the sizes and shapes of various structures differ greatly and their relative positions vary in a rather complex manner. In this article, we perform a statistical study of the deformations yielded by the registration of an image database with an anatomical atlas, and we propose methods to re-inject this information into the registration. We show that this provides more accurate segmentations of brain structures.