Published in

Oxford University Press, Stem Cells, 6(34), p. 1527-1540, 2016

DOI: 10.1002/stem.2333

Links

Tools

Export citation

Search in Google Scholar

PHF8 regulates mesodermal and cardiac differentiation of embryonic stem cells through mediating the histone demethylation of pmaip1 : PHF8 regulates apoptosis in ESC differentiation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Histone demethylases have emerged as key regulators of biological processes. The H3K9me2 demethylase plant homeo domain finger protein 8(PHF8), for example, is involved in neuronal differentiation, but its potential function in the differentiation of embryonic stem cells (ESCs) to cardiomyocytes is poorly understood. Here, we explored the role of PHF8 during mesodermal and cardiac lineage commitment of mouse ESCs (mESCs). Using a phf8 knockout (ph8-/Y) model, we found that deletion of phf8 in ESCs did not affect self-renewal, proliferation or early ectodermal/endodermal differentiation, but it did promote the mesodermal lineage commitment with the enhanced cardiomyocyte differentiation. The effects were accompanied by a reduction in apoptosis through a caspase 3-independent pathway during early ESC differentiation, without significant differences between differentiating wide-type (ph8+/Y) and ph8-/Y ESCs in cell cycle progression or proliferation. Functionally, PHF8 promoted the loss of a repressive mark H3K9me2 from the transcription start site of a proapoptotic gene pmaip1 and activated its transcription. Furthermore, knockdown of pmaip1 mimicked the phenotype of ph8-/Y by showing the decreased apoptosis during early differentiation of ESCs and promoted mesodermal and cardiac commitment, while overexpression of pmaip1 or phf8 rescued the phenotype of ph8-/Y ESCs by increasing the apoptosis and weakening the mesodermal and cardiac differentiation. These results reveal that the histone demethylase PHF8 regulates mesodermal lineage and cell fate decisions in differentiating mESCs through epigenetic control of the gene critical to programmed cell death pathways.