Published in

Future Medicine, Epigenomics, 7(7), p. 1155-1164, 2015

DOI: 10.2217/epi.15.71

Links

Tools

Export citation

Search in Google Scholar

Metabolic–epigenetic crosstalk in macrophage activation

Journal article published in 2015 by Jeroen Baardman ORCID, Iris Licht, Menno Pj de Winther, Jan Van den Bossche
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Epigenetic enzymes are emerging as crucial controllers of macrophages, innate immune cells that determine the outcome of many inflammatory diseases. Recent studies demonstrate that the activity of particular chromatin-modifying enzymes is regulated by the availability of specific metabolites like acetyl-coenzyme A, S-adenosylmethionine, α-ketoglutarate, nicotinamide adenine dinucleotide and polyamines. In this way chromatin-modifying enzymes could sense the macrophage's metabolic status and translate this into gene expression and phenotypic changes. Importantly, distinct macrophage activation subsets display particular metabolic pathways. IFNγ/lipopolysaccharide-activated macrophages (MIFNγ/LPS or M1) display high glycolysis, which directly drives their inflammatory phenotype. In contrast, oxidative mitochondrial metabolism and enhanced polyamine production are hallmarks and requirements for IL-4-induced macrophage activation (MIL-4 or M2). Here we report how epigenetics could serve as a bridge between altered macrophage metabolism, macrophage activation and disease.