Published in

De Gruyter, Zeitschrift für Physikalische Chemie, 9(229), p. 1265-1274, 2015

DOI: 10.1515/zpch-2014-0663

Links

Tools

Export citation

Search in Google Scholar

3D Li Diffusion in c-LixTiS2 (x = 0.69 and 0.75): A Theoretical Study

Journal article published in 2015 by Mazharul M. Islam, Thomas Bredow
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Lithium diffusion in the spinel type cubic titanium disulphide (c-LixTiS2, x = 0.69 and 0.75) is investigated theoretically with periodic density-functional theory (DFT) method. The calculated unit cell length and bond distances for a series of LixTiS2 (0 < x < 1) compounds are in agreement with the experimental data, with the maximum deviation of +0.06% for the lattice parameter and −1.2% for the bond length. In agreement with Vegard's law, the unit cell length a is an almost linear function of x. The calculated average intercalation potentials for the series LixTiS2 (0 < x < 1) range between 1.6 to 1.9 V which is in the range of experimental findings. Competing pathways for Li diffusion in c-LixTiS2 (x = 0.69 and 0.75) are investigated using the climbing-image Nudged-Elastic-Band (cNEB) approach. Li+ ions can migrate along the 〈100〉 and 〈110〉 directions suggesting that Li+ diffusion in c-LixTiS2 is three-dimensional (3D). The calculated activation energy values for the considered migration pathways show that Li+ diffusion along the 〈100〉 directions is more preferable that that along the 〈110〉 directions.