Published in

De Gruyter Open, Hybrid Materials, 1(2), 2015

DOI: 10.1515/hyma-2015-0003

Links

Tools

Export citation

Search in Google Scholar

Impact of photocatalysis on carotenoic acid dye-sensitized solar cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSensitized mesoporous titania is of increasing interest for catalysis and photovoltaic devices such as dye-sensitized solar cells (DSCs). For photovoltaic applications, the catalytic properties of TiO2 can cause degradation of the dyes during device fabrication. This is especially the case if natural sensitizers are used. We addressed this issue by fabrication of carotenoic acid sensitized solar cells under inert and ambient assembly conditions. The DSCs were investigated by currentvoltage and quantum efficiency measurements. Further characterization of the cells was made using impedance spectroscopy. The conversion efficiency of the DSCs prepared under inert conditions improved by at least 25% and the devices showed an enhanced reproducibility. The improvement of the DSCs correlated with the conversion efficiency of the sensitizers under inert conditions. We conclude that the photocatalytic bleaching depends on the electron injection efficiency of the sensitizer. Hence carotenoic acids support their own degradation. However, the photocatalytic decomposition of the sensitizers can be avoided by fabrication of the DSCs under inert conditions.