Published in

International Union of Crystallography, Journal of Applied Crystallography, 1(40), p. 151-157, 2007

DOI: 10.1107/s0021889806047558

Links

Tools

Export citation

Search in Google Scholar

Phase-object approximation in small-angle neutron scattering experiments on silicon gratings

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The phase-object approximation for neutron scattering based on a one-dimensional dynamic forward scattering theory is discussed and used to calculate the differential cross section of an object. It is shown that this approximation is valid in ultra-small-angle neutron scattering (USANS) and spin-echo small-angle neutron scattering (SESANS) experiments on silicon gratings. In the weak scattering limit, the phase-object approximation reduces to the kinematic or first Born approximation. The spatial coherence function is used to describe instrumental resolution effects. Measurements on three different instruments are in good agreement with calculation results. In the experiment with a time-of-flight SESANS instrument, the effect ofPendellösungwith object size is observed.