Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

Transparent electrodes composed of silver nanowire networks for photovoltaic applications

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Research is increasingly being dedicated towards replacing rare earth elements in Transparent Conductive Materials (TCMs). In this work we present the investigation of silver nanowire (AgNW) networks as transparent electrodes for solar cell applications. Metallic nanowire networks can be deposited via low cost deposition techniques and exhibit very interesting electrical, optical and mechanical properties. Experimental and simulation approaches aim at improving their physical properties. Indeed, we show that a thermal annealing can drastically improve transport properties of the nearly transparent networks. We also explore the optimization of the network density. These percolating networks exhibit excellent properties (i.e. sheet resistances (Rs) of about 10 Ω/sq and optical transparency of approximately 90%) compatible with solar applications requirements. This makes them very appropriate for future uses in low cost, large area and flexible solar and display technologies. A comprehensive understanding of the main physical properties of this promising nanostructured network and its integration with solar cells will then be presented ; Peer reviewed