Published in

Hindawi, ISRN Bioinformatics, (2014), p. 1-7

DOI: 10.1155/2014/345106

Links

Tools

Export citation

Search in Google Scholar

Comparison of Merging and Meta-Analysis as Alternative Approaches for Integrative Gene Expression Analysis

Journal article published in 2014 by Jonatan Taminau ORCID, Cosmin Lazar ORCID, Stijn Meganck ORCID, Ann Nowé
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

An increasing amount of microarray gene expression data sets is available through public repositories. Their huge potential in making new findings is yet to be unlocked by making them available for large-scale analysis. In order to do so it is essential that independent studies designed for similar biological problems can be integrated, so that new insights can be obtained. These insights would remain undiscovered when analyzing the individual data sets because it is well known that the small number of biological samples used per experiment is a bottleneck in genomic analysis. By increasing the number of samples the statistical power is increased and more general and reliable conclusions can be drawn. In this work, two different approaches for conducting large-scale analysis of microarray gene expression data—meta-analysis and data merging—are compared in the context of the identification of cancer-related biomarkers, by analyzing six independent lung cancer studies. Within this study, we investigate the hypothesis that analyzing large cohorts of samples resulting in merging independent data sets designed to study the same biological problem results in lower false discovery rates than analyzing the same data sets within a more conservative meta-analysis approach.