Published in

Oxford University Press, Journal of Industrial Microbiology and Biotechnology, 12(41), p. 1763-1772, 2014

DOI: 10.1007/s10295-014-1524-2

Links

Tools

Export citation

Search in Google Scholar

Increase of methane formation by ethanol addition during continuous fermentation of biogas sludge

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Very recently, it was shown that the addition of acetate or ethanol led to enhanced biogas formation rates during an observation period of 24 h. To determine if increased methane production rates due to ethanol addition can be maintained over longer time periods, continuous reactors filled with biogas sludge were developed which were fed with the same substrates as the full-scale reactor from which the sludge was derived. These reactors are well reflected conditions of a full-scale biogas plant during a period of 14 days. When the fermenters were pulsed with 50–100 mM ethanol, biomethanation increased by 50–150 %, depending on the composition of the biogas sludge. It was also possible to increase methane formation significantly when 10–20 mM pure ethanol or ethanolic solutions (e.g. beer) were added daily. In summary, the experiments revealed that “normal” methane production continued to take place, but ethanol led to production of additional methane.