Published in

American Chemical Society, Biomacromolecules, 3(5), p. 971-976, 2004

DOI: 10.1021/bm030079a

Links

Tools

Export citation

Search in Google Scholar

NMR Imaging of the Diffusion of Water at 37 °C into Poly(2-hydroxyethyl methacrylate) Containing Aspirin or Vitamin B 12

Journal article published in 2004 by Mohammad A. Chowdhury, David J. T. Hill, Andrew K. Whittaker
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The ingress of water into poly(2-hydroxyethyl methacrylate), PHEMA, loaded with either one of two model drugs, vitamin B(12) or aspirin, was studied at 37 degrees C using three-dimensional NMR imaging. PHEMA was loaded with 5 and 10 wt % of the drugs. From the imaging profiles, it was observed that incorporation of vitamin B(12) into PHEMA resulted in enhanced crack formation on sorption of water and the crack healing behind the diffusion front was slower than for PHEMA without added drug. This was accounted for by the anti-plasticization of PHEMA by vitamin B(12). Crack formation was inhibited in the PHEMA-aspirin systems because of the plasticizing effect of the aspirin on the PHEMA matrix. All of the polymers were found to absorb water according to an underlying Fickian diffusion mechanism. For PHEMA loaded with 5 wt % of aspirin or vitamin B(12), the best values of the water diffusion coefficients were both found to be 1.3 +/- 0.1 x 10(-11) m(2) s(-1) at 37 degrees C, while the values for the polymer loaded with 10 wt % of the drugs were slightly higher, 1.5 +/- 0.1 x 10(-11) m(2) s(-1).