Links

Tools

Export citation

Search in Google Scholar

Impact of immobile porosity architecture on reactive transport in mobile/immobile models

Proceedings article published in 2013 by Tristan Babey, Jean-Raynald De Dreuzy, Alain Rapaport, Céline Casenave
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Diffusive porosity structures in aquifers can display a large diversity of topologies, from intergranular porosity to the ‘dead-ends’ of fracture networks. Here we study numerically the influence of this topology on solute transport parameters, such as dispersion coefficient, and on a simple equilibrium reaction. We build a model where diffusive structures of variable topology (with junctions, loops…) exchange with a fast, advective zone. We show that the internal organization of volumes of the diffusive structure has a strong and non-trivial influence on transport and reactivity. We also show, through Multi-Rate Mass Transfer framework, that the signature of this topology on residence times is often sufficient to reproduce the initial reaction rates. We thus propose new ways to determine the appropriate MRMT models for a wide range of porosity types. However, more complex chemical / physical processes (kinetic-limited reactions, gravity effects…) may diminish this relevance of MRMT models to reproduce reaction rates, and additional parameters linked to the topology of diffusive structures may be required.