Published in

Elsevier, Atmospheric Research, (174-175), p. 135-141, 2016

DOI: 10.1016/j.atmosres.2016.02.013

Links

Tools

Export citation

Search in Google Scholar

Regional and hemispheric influences on measured spring peroxyacetyl nitrate (PAN) mixing ratios at the Auchencorth UK EMEP supersite

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This work presents 15-min averaged measurements of peroxyacetyl nitrate (PAN) obtained during spring 2014 (24/04/2014 – 06/05/2014) at the Auchencorth UK EMEP supersite (southeast Scotland). The aim of this analysis was to investigate the conditions producing the distribution of PAN mixing ratios at the supersite in spring 2014. Air mass back trajectories showed the majority of air masses to have spent substantial time over the UK, continental Europe or Scandinavia prior to arrival at Auchencorth. The median and 95th percentile PAN mixing ratios observed were 0.46 ppb and 1.03 ppb, respectively. The median mixing ratio was elevated compared with previous PAN measurements during springtime (April–May) in southeast Scotland (corresponding median mixing ratios April–May 1994–1998: 0.1–0.3 ppb), which is hypothesised to be due to conditions conducive to regional (European) photochemical PAN production. Additionally, PAN mixing ratios during regionally influenced conditions (0.4–1.5 ppb) were substantially more elevated from hemispheric background mixing ratios (0.4–0.6 ppb) than for ozone (O3, regional: 10–45 ppb, hemispheric: 30–40 ppb). PAN and O3 both impact upon vegetation and human health and it is necessary to understand the extent to which hemispheric and regional processes contribute to their abundances in different locations. Regional processes can both increase and decrease PAN and O3 mixing ratios compared to imported hemispheric background mixing ratios. This study concludes that during the measurement period in spring 2014 at the Auchencorth supersite, regional PAN and O3 modifying processes enhanced PAN mixing ratios more than for O3.