Published in

Hindawi, BioMed Research International, (2016), p. 1-9, 2016

DOI: 10.1155/2016/5475120

Links

Tools

Export citation

Search in Google Scholar

Update on Mechanisms of Renal Tubule Injury Caused by Advanced Glycation End Products

Journal article published in 2016 by Hong Sun, Yang Yuan, Zilin Sun
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Diabetic nephropathy (DN) caused by advanced glycation end products (AGEs) may be associated with lipid accumulation in the kidneys. This study was designed to investigate whether Nε-(carboxymethyl) lysine (CML, a member of the AGEs family) increases lipid accumulation in a human renal tubular epithelial cell line (HK-2) via increasing cholesterol synthesis and uptake and reducing cholesterol efflux through endoplasmic reticulum stress (ERS). Our results showed that CML disrupts cholesterol metabolism in HK-2 cells by activating sterol regulatory element-binding protein 2 (SREBP-2) and liver X receptor (LXR), followed by an increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR) mediated cholesterol synthesis and low density lipoprotein receptor (LDLr) mediated cholesterol uptake and a reduction in ATP-binding cassette transporter A1 (ABCA1) mediated cholesterol efflux, ultimately causing lipid accumulation in HK-2 cells. All of these responses could be suppressed by an ERS inhibitor, which suggests that CML causes lipid accumulation in renal tubule cells through ERS and that the inhibition of ERS is a potential novel approach to treating CML-induced renal tubular foam cell formation.