Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, Stem Cells International, (2016), p. 1-20, 2016

DOI: 10.1155/2016/6235687

Links

Tools

Export citation

Search in Google Scholar

Increased Understanding of Stem Cell Behavior in Neurodegenerative and Neuromuscular Disorders by Use of Noninvasive Cell Imaging

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Numerous neurodegenerative and neuromuscular disorders are associated with cell-specific depletion in the human body. This imbalance in tissue homeostasis is in healthy individuals repaired by the presence of endogenous stem cells that can replace the lost cell type. However, in most disorders, a genetic origin or limited presence or exhaustion of stem cells impairs correct cell replacement. During the last 30 years, methods to readily isolate and expand stem cells have been developed and this resulted in a major change in the regenerative medicine field as it generates sufficient amount of cells for human transplantation applications. Furthermore, stem cells have been shown to release cytokines with beneficial effects for several diseases. At present however, clinical stem cell transplantations studies are struggling to demonstrate clinical efficacy despite promising preclinical results. Therefore, to allow stem cell therapy to achieve its full potential, more insight in theirin vivobehavior has to be achieved. Different methods to noninvasively monitor these cells have been developed and are discussed. In some cases, stem cell monitoring even reached the clinical setting. We anticipate that by further exploring these imaging possibilities and unraveling theirin vivobehavior further improvement in stem cell transplantations will be achieved.