Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep21112

Links

Tools

Export citation

Search in Google Scholar

Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway.