Published in

Oxford University Press, The Journal of Nutrition, 4(146), p. 767-777, 2016

DOI: 10.3945/jn.115.223610

Links

Tools

Export citation

Search in Google Scholar

Intake of Total Polyphenols and Some Classes of Polyphenols Is Inversely Associated with Diabetes in Elderly People at High Cardiovascular Disease Risk

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk ; Background: Higher consumption of some polyphenols has been associated with a reduced risk of diabetes. However, no studies have evaluated the relation between all polyphenol subclasses and the incidence of diabetes. Objective: We aimed to prospectively examine the associations between the intake of total polyphenols and different groups of polyphenols (flavonoids, phenolic acids, stilbenes, lignans, and others) on the risk of incident diabetes in the PREDIMED (Prevención con Dieta Mediterránea) trial. Methods: This was an observational cohort analysis of the nondiabetic participants in the PREDIMED trial. This study was a multicenter, controlled, randomized, parallel-group feeding trial to assess the effects of either a Mediterranean diet that was supplemented with extra-virgin olive oil or nuts or advice to adhere to a low-fat control diet on cardiovascular outcomes in elderly men and women at high cardiovascular disease risk. From the 7447 randomly assigned participants, 3430 were selected because they were free of diabetes at baseline and filled out the food-frequency questionnaires (FFQs). Polyphenol intake was calculated by matching food consumption data from repeated FFQs with the Phenol- Explorer database on the polyphenol content of each reported food. HRs and 95% CIs for diabetes according to tertiles of polyphenol intake were estimated with the use of time-dependent Cox proportional hazards models. Results: Over a mean of 5.51 y of follow-up (18,900 person-years), there were 314 new cases of diabetes. After multivariable adjustment, we observed a 28% reduction in new-onset diabetes in the highest compared with the lowest tertile of total polyphenol intake (HR: 0.72; 95% CI: 0.52, 0.99; P-trend = 0.05). The intake of subclasses of polyphenols also was inversel