Published in

Elsevier, Algal Research, (15), p. 110-119, 2016

DOI: 10.1016/j.algal.2016.02.005

Links

Tools

Export citation

Search in Google Scholar

Competition-based phenotyping reveals a fitness cost for maintaining phycobilisomes under fluctuating light in the cyanobacterium Fremyella diplosiphon

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phycobilisomes (PBSs) are pigment-rich super-complexes required for efficient harvest and transfer of light energy to photosynthetic reaction centers of cyanobacteria. The model cyanobacterium Fremyella diplosiphon is able to adjust PBS pigmentation and size in response to the prevailing light spectrum through a process called complementary chromatic acclimation to optimize spectral light absorption, concomitantly optimizing photosynthesis and growth. We explored the fitness costs versus advantages of modulating antennae size and composition under sinusoidal continuous and fluctuating light conditions in F. diplosiphon by comparing growth of wild-type (WT) cells with a mutant strain deficient in PBSs in both monoculture and polyculture conditions. Comparative analyses of WT and the PBS-deficient FdCh1 strain under continuous vs. fluctuating sinusoidal light suggest a potential fitness advantage for maintaining PBSs in WT cells during continuous light and a fitness cost during transitions to and acclimation under fluctuating light. We explored the physiological changes correlated with the observed differential growth to understand the dynamics and biochemical bases of comparative fitness of distinct strains under defined growth conditions. Wild-type F. diplosiphon appears to accumulate longer PBS rods and exhibits higher oxidative stress under fluctuating light conditions than continuous sinusoidal light, which may impact responses and the fitness of cells that do not adapt to rapid changes in external light.