Published in

Wiley, Angewandte Chemie International Edition, 28(53), p. 7344-7348, 2014

DOI: 10.1002/anie.201402244

Links

Tools

Export citation

Search in Google Scholar

A Metallic Room-Temperature Oxide Ion Conductor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nanoparticles of Bi3Ir, obtained from a microwave-assisted polyol process, activate molecular oxygen from air at room temperature and reversibly intercalate it as oxide ions. The closely related structures of Bi3Ir and Bi3IrOx (x < 2) were investigated by X-ray diffraction, electron microscopy, and quantum-chemical modeling. In the topochemically formed metallic suboxide, the intermetallic building units are fully preserved. Time- and temperature-dependent monitoring of the oxygen uptake in an oxygen-filled chamber shows that the activation energy for oxide diffusion (84 meV) is one order of magnitude smaller than that in any known material. Bi3IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature.