Published in

Trans Tech Publications, Materials Science Forum, (638-642), p. 1830-1835, 2010

DOI: 10.4028/www.scientific.net/msf.638-642.1830

Links

Tools

Export citation

Search in Google Scholar

Comparison of Structure and Properties of Hard Coatings on Commercial Tool Materials Manufactured with the Pressureless Forming Method or Laser Treatment

Journal article published in 2010 by Grzegorz Matula, Mirołsaw Bonek, Leszek Adam Dobrzański ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The goal of the work is fabrication coatings with the pressureless forming method or laser treatment retaining the relatively high ductility of the coated tool's core. The paper presents selection of the binder portion and type, and also of the metallic and carbides powders (WC) being the constituents of the polymer-powder slurry which was applied onto the prepared surfaces of the test pieces from the conventional HS6-5-2 high speed steel. This materials was compared with the same conventional HS6-5-2 high speed steel heat-treatable steel after laser treatment conditions and alloying additions contained in WC. Investigation indicate the influence of the alloying carbides on the structure and properties of the surface layer of investigated steel depending on manufacturing conditions and power implemented laser (HPDL). In the effect of laser alloying with powders of carbides occurs size reduction of microstructure as well as dispersion hardening through fused in but partially dissolved carbides and consolidation through enrichment of surface layer in alloying additions coming from dissolving carbides. The resistivity to thermal fatique of laser remelted steel is higher than steel after heat treatment. It shows the possibility of applying the worked out technology to manufacturing or regeneration of chosen hot working tools.