Published in

Trans Tech Publications, Advanced Materials Research, (1105), p. 311-314, 2015

DOI: 10.4028/www.scientific.net/amr.1105.311

Links

Tools

Export citation

Search in Google Scholar

Electroactive Polymer Actuator Based on PVDF and Graphene through Electrospinning

Journal article published in 2015 by Fan Wang ORCID, Seong Young Ko, Jong Oh Park, Suk Ho Park, Chang Doo Kee
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report a novel high-performance electroactive polymer actuator based on poly (vinylidene fluoride) (i.e., PVDF) and graphene. The PVDF-graphene composite membranes were fabricated through electrospinning method. The electrospun composite membrane has a three-dimensional network structure, high porosity, and large ionic liquid solution uptake which are a prerequisite for high performance dry-type electroactive soft actuators. The conductive poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) layers were deposited on the surfaces of the composite membrane through dipping-drying method. The electroactive PVDF-graphene actuators under both harmonic and step electrical inputs show larger bending deformation and faster response time than the pure PVDF actuator. X-ray diffusion (XRD) and ionic conductivity testing results for the PVDF-graphene membrane were compared with those of pristine PVDF. Most important, the PVDF-graphene actuator shows much larger bending deformation under low input voltage, and this could be due to the synergistic effects of the higher ionic conductivity of PVDF-graphene membrane and the electrochemical doping processes of the PEDOT:PSS electrode layers.