Published in

Springer Nature [academic journals on nature.com], Molecular Psychiatry, 2(19), p. 168-174, 2013

DOI: 10.1038/mp.2013.166

Links

Tools

Export citation

Search in Google Scholar

Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It has long been recognized that generalized deficits in cognitive ability represent a core component of schizophrenia, evident prior to full illness onset and independent of medication. The possibility of genetic overlap between risk for schizophrenia and cognitive phenotypes has been suggested by the presence of cognitive deficits in first-degree relatives of patients with schizophrenia; however, until recently, molecular genetic approaches to test this overlap have been lacking. Within the last few years, large-scale genome-wide association studies (GWAS) of schizophrenia have demonstrated that a substantial proportion of the heritability of the disorder is explained by a polygenic component consisting of many common SNPs of extremely small effect. Similar results have been reported in GWAS of general cognitive ability. The primary aim of the present study is to provide the first molecular genetic test of the classic endophenotype hypothesis, which states that alleles associated with reduced cognitive ability should also serve to increase risk for schizophrenia. We tested the endophenotype hypothesis by applying polygenic SNP scores derived from a large-scale cognitive GWAS meta-analysis (~5000 individuals from 9 non-clinical cohorts comprising the COGENT consortium) to four schizophrenia case-control cohorts. As predicted, cases had significantly lower cognitive polygenic scores compared to controls. In parallel, polygenic risk scores for schizophrenia were associated with lower general cognitive ability. Additionally, using our large cognitive meta-analytic dataset, we identified nominally significant cognitive associations for several SNPs that have previously been robustly associated with schizophrenia susceptibility. Results provide molecular confirmation of the genetic overlap between schizophrenia and general cognitive ability, and may provide additional insight into pathophysiology of the disorder.