Published in

Springer (part of Springer Nature), Calcified Tissue International and Musculoskeletal Research, 3(81), p. 162-173

DOI: 10.1007/s00223-007-9052-y

Links

Tools

Export citation

Search in Google Scholar

Bivariate Linkage Study of Proximal Hip Geometry and Body Size Indices: The Framingham Study

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Femoral geometry and body size are both characterized by substantial heritability. The purpose of this study was to discern whether hip geometry and body size (height and body mass index, BMI) share quantitative trait loci (QTL). Dual-energy X-ray absorptiometric scans of the proximal femur from 1,473 members in 323 pedigrees (ages 31-96 years) from the Framingham Osteoporosis Study were studied. We measured femoral neck length, neck-shaft angle, subperiosteal width (outer diameter), cross-sectional bone area, and section modulus, at the narrowest section of the femoral neck (NN), intertrochanteric (IT), and femoral shaft (S) regions. In variance component analyses, genetic correlations (rho ( G )) between hip geometry traits and height ranged 0.30-0.59 and between hip geometry and BMI ranged 0.11-0.47. In a genomewide linkage scan with 636 markers, we obtained nominally suggestive linkages (bivariate LOD scores > or =1.9) for geometric traits and either height or BMI at several chromosomes (4, 6, 9, 15, and 21). Two loci, on chr. 2 (80 cM, BMI/shaft section modulus) and chr. X (height/shaft outer diameter), yielded bivariate LOD scores > or =3.0; although these loci were linked in univariate analyses with a geometric trait, neither was linked with either height or BMI. In conclusion, substantial genetic correlations were found between the femoral geometric traits, height and BMI. Linkage signals from bivariate linkage analyses of bone geometric indices and body size were similar to those obtained in univariate linkage analyses of femoral geometric traits, suggesting that most of the detected QTL primarily influence geometry of the hip.