Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Journal of Signal Processing Systems, 2(68), p. 273-285

DOI: 10.1007/s11265-011-0614-x

Links

Tools

Export citation

Search in Google Scholar

FPGA architecture of the LDPS Motion Estimation for H.264/AVC Video Coding

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Motion estimation is a highly computational demanding operation during video compression process and significantly affects the output quality of an encoded sequence. Special hardware architectures are required to achieve real-time compression performance. Many fast search block matching motion estimation (BMME) algorithms have been developed in order to minimize search positions and speed up computation but they do not take into account how they can be effectively implemented by hardware. In this paper, we propose three new hardware architectures of fast search block matching motion estimation algorithm using Line Diamond Parallel Search (LDPS) for H.264/AVC video coding system. These architectures use pipeline and parallel processing techniques and present minimum latency, maximum throughput and full utilization of hardware resources. The VHDL code has been tested and can work at high frequency in a Xilinx Virtex-5 FPGA circuit for the three proposed architectures.