Published in

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 4(9), p. 15125-15179

DOI: 10.5194/acpd-9-15125-2009

Links

Tools

Export citation

Search in Google Scholar

Observations of boundary layer, mixed-phase and multi-layer Arctic clouds with different lidar systems during ASTAR 2007

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR), which was conducted in Svalbard in March and April 2007, tropospheric Arctic clouds were observed with two ground-based backscatter lidar systems (micro pulse lidar and Raman lidar) and with an airborne elastic lidar. An increase in low-level (cloud tops below 2.5 km) cloud cover from 51% to 65% was observed above Ny-Ålesund during the time of the ASTAR campaign. Four different case studies of lidar cloud observations are analyzed: With the ground-based Raman lidar, a pre-condensation layer was observed at an altitude of 2 km. The layer consisted of small droplets with a high number concentration (around 300 cm−3) at low temperatures (−30°C). Observations of a boundary layer mixed-phase cloud by airborne lidar were evaluated with the measurements of concurrent airborne in situ and spectral solar radiation sensors. Two detailed observations of multiply layered clouds in the free troposphere are presented. The first case was composed of various ice layers with different optical properties detected with the Raman lidar, the other case showed a mixed-phase double layer and was observed by airborne lidar. The analysis of these four cases confirmed that lidar data provide information of the whole range from subvisible to optically thick clouds. Despite the attenuation of the laser signal in optically thick clouds and multiple scattering effects, information on the geometrical boundaries of liquid water clouds were obtained. Furthermore, the dominating phase of the clouds' particles in the layer closest to the lidar system could be retrieved.