Published in

American Chemical Society, Chemistry of Materials, 3(28), p. 915-924, 2016

DOI: 10.1021/acs.chemmater.5b04608

Links

Tools

Export citation

Search in Google Scholar

Unravelling Ultraslow Lithium-Ion Diffusion in γ-LiAlO2: Experiments with Tracers, Neutrons, and Charge Carriers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Lithium aluminum oxide (γ-LiAlO2) has been discussed and used for various applications, e.g., as electrode coating, membrane or tritium breeder material. Although lithium-ion diffusion in this solid is essential for these purposes, it is still not sufficiently understood on the microscopic scale. Herein, we not only summarize and assess the available studies on diffusion in different crystalline forms of γ-LiAlO2, but also complement them with tracer-diffusion experiments on (001)- and conductivity spectroscopy on (100)-oriented single crystals, yielding activation energies of 1.20(5) eV and 1.12(1) eV, respectively. Scrutinous crystal-chemical considerations, Voronoi–Dirichlet partitioning, and Hirshfeld surface analysis are employed to identify possible diffusion pathways. The one-particle potential (OPP), as derived from high-temperature powder neutron diffraction data presented as well, reveals the major path to be strongly curved and to run between adjacent lithium positions with a migration barrier of 0.72(5) eV. This finding is substantiated by comparison with recently published computational results. For the first time, a complete model for lithium-ion diffusion in γ-LiAlO2, consistent with all available data, is presented.