Published in

Public Library of Science, PLoS ONE, 2(5), p. e9320, 2010

DOI: 10.1371/journal.pone.0009320

Links

Tools

Export citation

Search in Google Scholar

Whole Methylome Analysis by Ultra-Deep Sequencing Using Two-Base Encoding

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Methylation, the addition of methyl groups to cytosine (C), plays an important role in the regulation of gene expression in both normal and dysfunctional cells. During bisulfite conversion and subsequent PCR amplification, unmethylated Cs are converted into thymine (T), while methylated Cs will not be converted. Sequencing of this bisulfite-treated DNA permits the detection of methylation at specific sites. Through the introduction of next-generation sequencing technologies (NGS) simultaneous analysis of methylation motifs in multiple regions provides the opportunity for hypothesis-free study of the entire methylome. Here we present a whole methylome sequencing study that compares two different bisulfite conversion methods (in solution versus in gel), utilizing the high throughput of the SOLiD™ System. Advantages and disadvantages of the two different bisulfite conversion methods for constructing sequencing libraries are discussed. Furthermore, the application of the SOLiD™ bisulfite sequencing to larger and more complex genomes is shown with preliminary in silico created bisulfite converted reads.