Published in

BioScientifica, Journal of Molecular Endocrinology, 1(55), p. 69-79, 2015

DOI: 10.1530/jme-15-0079

Links

Tools

Export citation

Search in Google Scholar

CYP11A1 expression in bone is associated with aromatase inhibitor-related bone loss

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Aromatase inhibitors (AIs) used as adjuvant therapy in postmenopausal women with hormone receptor-positive breast cancer cause diverse musculoskeletal side effects that include bone loss and its associated fracture. About half of the 391 patients treated with AIs in the Barcelona–Aromatase induced bone loss in early breast cancer cohort suffered a significant bone loss at lumbar spine (LS) and/or femoral neck (FN) after 2 years on AI-treatment. In contrast, up to one-third (19.6% LS, 38.6% FN) showed no decline or even increased bone density. The present study aimed to determine the genetic basis for this variability. SNPs in candidate genes involved in vitamin D and estrogen hormone-response pathways (CYP11A1, CYP17A1, HSD3B2, HSD17B3, CYP19A1, CYP2C19, CYP2C9, ESR1, DHCR7, GC, CYP2R1, CYP27B1, VDR and CYP24A1) were genotyped for association analysis with AI-related bone loss (AIBL). After multiple testing correction, 3 tag-SNPs (rs4077581, s11632698 and rs900798) located in the CYP11A1 gene were significantly associated (P<0.005) with FN AIBL at 2 years of treatment. Next, CYP11A1 expression in human fresh bone tissue and primary osteoblasts was demonstrated by RT-PCR. Both common isoforms of human cholesterol side-chain cleavage enzyme (encoded by CYP11A1 gene) were detected in osteoblasts by western blot. In conclusion, the genetic association of CYP11A1 gene with AIBL and its expression in bone tissue reveals a potential local function of this enzyme in bone metabolism regulation, offering a new vision of the steroidogenic ability of this tissue and new understanding of AI-induced bone loss.