Synthesis, Binding and Antiviral Properties of Potent Core-Extended Naphthalene Diimides Targeting the HIV-1 Long Terminal Repeat Promoter G-Quadruplexes

Full text: Download

Publisher: American Chemical Society

Preprint: archiving restricted: Upload

  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines

Postprint: archiving restricted: Upload

  • If mandated by funding agency or employer/ institution
  • If mandated to deposit before 12 months, must obtain waiver from Institution/Funding agency or use AuthorChoice
  • 12 months embargo

Published version: archiving forbidden. Upload

Policy details (opens in a new window). Data provided by SHERPA/RoMEO
We have previously reported that stabilization of the G-quadruplex structures in the HIV-1 Long Terminal Repeat (LTR) promoter suppresses viral transcription. Here we sought to develop new G-quadruplex ligands to be exploited as antiviral compounds by enhancing binding towards the viral G-quadruplex structures. We synthesized naphthalene diimide derivatives with a lateral expansion of the aromatic core. The new compounds were able to bind/stabilize the G-quadruplex to a high extent and some of them displayed clear-cut selectivity towards the viral G-quadruplexes with respect to the human telomeric G-quadruplexes. This feature translated into low nanomolar anti-HIV-1 activity towards two viral strains and encouraging selectivity indexes. The selectivity depended on specific recognition of LTR loop residues; the mechanism of action was ascribed to inhibition of LTR promoter activity in cells. This is the first example of G-quadruplex ligands that show increased selectivity towards the viral G-quadruplexes and display remarkable antiviral activity.