Published in

Karger Publishers, Fetal Diagnosis and Therapy, 4(34), p. 225-235, 2013

DOI: 10.1159/000354895

Links

Tools

Export citation

Search in Google Scholar

A comparative study on culture conditions and routine expansion of amniotic fluid-derived mesenchymal progenitor cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

<b><i>Background:</i></b> Amniotic fluid (AF) cell populations will be applied in perinatology. We aimed to test the feasibility of large-scale cell expansion. <b><i>Study Methods:</i></b> We determined the best out of three published expansion protocols for mesenchymal progenitors (AF samples, n = 4) in terms of self-renewal ability. Characterization was performed based on morphology, surface marker analysis, cytogenetic stability, and differentiation potential. The conditions for the best self-renewal ability were further determined in a consecutive series (n = 159). <b><i>Results:</i></b> The medium containing fetal bovine serum (FBS), epidermal growth factor, insulin, transferrin, and tri-iodothyronine, combined with seeding on gelatin-coated wells, best stimulated the growth of cells with mesenchymal features, as demonstrated by flow cytometry; however, only osteogenic differentiation was possible. Large-scale testing (n = 44) failed to confirm a robust self-renewal ability. Better results were obtained (n = 88) using optimized FBS or an increased initial cell density. Eventually over 81% of cultures continued growing after the initial medium change and had mesenchymal features but failed differentiation assays. <b><i>Discussion:</i></b> Routine in vitro expansion of AF-derived mesenchymal cells remains problematic. Despite an increase in successful cell cultures from 40 up to 80% using optimized serum and an increased cell density, eventually cells failed to demonstrate differentiation abilities. Routine isolation and expansion from unselected AF samples remains a challenge.