Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Langmuir, 17(26), p. 13847-13854, 2010

DOI: 10.1021/la1020274

Links

Tools

Export citation

Search in Google Scholar

Influence of Monomer Feeding on a Fast Gold Nanoparticles Synthesis: Time-Resolved XANES and SAXS Experiments

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A comprehensive study of the mechanism of gold nanoparticle formation has been conducted using third-generation synchrotrons. The particles were obained by reduction of AuCl(3) by BH(4)(-) in toluene. Gold oxidation state was monitored by X-ray absorption near edge spectroscopy (XANES), while the size and concentration of the nanoparticles were assessed by small-angle X-ray scattering (SAXS). A time-resolution of 100 ms has been achieved for a total formation time of a few seconds. The change with time of the total amount of Au(0) present in the solution is obtained by XANES. The change of the amount of Au(0) inside the nanoparticles is obtained from the SAXS signal. The comparison between these two quantities shows that a measurable amount of Au(0) exists transiently as monomers (or very small entities) in solution and this quantity is linked to an observed burst of nucleation of nanoparticles. The reduction kinetics is strongly influenced by the presence of ligands and a change in temperature. A model coupling the observed reduction kinetics and nucleation and growth laws is able to recover the final size and number densities of the explored experimental conditions.