Published in

Springer Nature [academic journals on nature.com], Cell Research, 3(26), p. 350-366, 2016

DOI: 10.1038/cr.2016.2

Links

Tools

Export citation

Search in Google Scholar

Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The molecular mechanism controlling the dismantling of naive pluripotency is poorly understood. Here we show that microRNAs (miRNAs) have important roles during naive to primed pluripotency transition. Dgcr8(-/-) embryonic stem cells (ESCs) failed to completely silence the naive pluripotency program, as well as to establish the primed pluripotency program during differentiation. miRNA profiling revealed that expression levels of a large number of miRNAs changed dynamically and rapidly during naive to primed pluripotency transition. Furthermore, a miRNA screen identified numerous miRNAs promoting naive to primed pluripotency transition. Unexpectedly, multiple miRNAs from miR-290 and miR-302 clusters, previously shown as pluripotency-promoting miRNAs, demonstrated the strongest effects in silencing naive pluripotency. Knockout of both miR-290 and miR-302 clusters but not either alone blocked the silencing of naive pluripotency program. Mechanistically, the miR-290/302 family of miRNAs may facilitate the exit of naive pluripotency in part by promoting the activity of MEK pathway and through directly repressing Akt1. Our study reveals miRNAs as an important class of regulators potentiating ESCs to transition from naive to primed pluripotency, and uncovers context-dependent functions of the miR-290/302 family of miRNAs at different developmental stages.Cell Research advance online publication 8 January 2016; doi:10.1038/cr2016.2.